Two Limonoids from the Root of *Dictamnus radicis* Cortex

Pei-Hua Zhao, Li-Mei Sun, Mei-Ai Cao, and Cheng-Shan Yuan*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China

(Received June 21, 2007; CL-070665; E-mail: yuancs@lzu.edu.cn)

A new limonoid isodictamdiol (1) and a known dictamdiol (2), the first 5S/9S-type degraded limonoids, were isolated from the EtOAc extracts of *Dictamnus radicis* Cortex. The structures of compounds 1 and 2 were respectively elucidated by means of the modern spectroscopic methods, including IR, MS, NMR, a single-crystal X-ray diffraction, as well as CD. In addition, the absolute configuration of 2 was determined for the first time.

The root of *Dictamnus radicis* Cortex (Rutaceae), locally known as Bai-Xian-Pi (in Chinese), is a traditional Chinese medicine used for the treatment of jaundice, rheumatism, and various other diseases. During our study on limonoid constituents from *D. radicis* Cortex, a pair of isomer named (2*S*,5*S*,7*R*,9*S*)-isodictamdiol (1) and (2*R*,5*S*,7*R*,9*S*)-dictamdiol (2), the first 5*S*/9*S*-type degraded limonoids, were isolated from the EtOAc extracts. Among them, 1 is a new compound. However, the spectroscopic data for 2 was inconsistent with its structure described, ^{2,3} so its spectral data have been slightly revised and the absolute configuration was determined for the first time. Herein, we mainly report the isolation and structure elucidation of 1 and 2 (Figure 1).

Isodictamdiol (1), $[\alpha]_D^{20}$ – 22 (c 0.57, MeOH) and colorless crystal, showed a molecular formula of $C_{15}H_{18}O_5$ as determined by HRESI-MS ($[M + NH_4]^+$ at m/z 296.1488, calcd. 296.1492) with seven degrees of unsaturation. IR absorptions exhibited the existence of two hydroxys $(3362 \text{ and } 3259 \text{ cm}^{-1})$, a δ -lactone (1724 cm⁻¹), a double bond (1600 cm⁻¹), and a furanyl ring (1506 and 873 cm⁻¹). In ¹HNMR spectrum, the characteristic signals at δ 7.65, 7.59, and 6.53 (each 1H, s) implied the β -substituted furyl ring, which was verified by four downfield carbon signals at δ_C 110.9 d, 121.4 s, 142.3 d, and 144.0 d in ¹³C NMR spectrum.^{2,4-7} In addition, the ¹H NMR spectrum (Table 1) exhibited signals due to a tertiary methyl $(\delta 1.02, 3H, s)$, a vinyl methyl $(\delta 1.86, 3H, s)$, two oxygen-bearing methines (δ 4.02, 1H, br s and δ 4.82, 1H, d, J = 4.8 Hz), and two secondary hydroxys (δ 4.02, 1H, br s and δ 5.33, 1H, d, $J = 4.8 \,\mathrm{Hz}$). The ¹³C NMR and DEPT spectra (Table 1) showed the presence of one ester carbonyl group, one β -furyl ring, one tetrasubstituted double bond, and eight sp³ carbons $[2 \times CH_3]$, $2 \times CH_2$, $3 \times CH$ (two oxygenated), $1 \times C$]. The planar

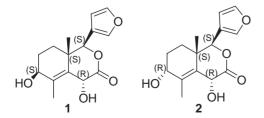
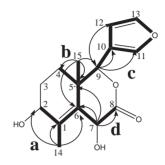
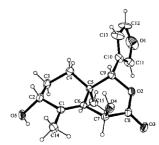



Figure 1. The structures of compounds 1 and 2.


Figure 2. The planar structure of 1 based on 2D NMR experiments.

structure of **1** was deduced by extensive 2D NMR experiments and single-crystal X-ray diffraction.

After assignments of all the direct $^1H^{-13}C$ bondings were made on the basis of the HMQC spectrum, four partial structures **a–d** were deduced from the $^1H^{-13}C$ NMR long-range correlations in the HMBC experiments (Figure 2). Furthermore, the HMBC cross-peaks: δ_H 4.02 (2-OH)/ δ_C 70.2 (CH-2) and δ_H 5.33 (7-OH)/ δ_C 67.9 (CH-7) as well as 135.1 (C-6) indicated that the two hydroxy groups were attached to C-2 and C-7, respectively. So the planar structure of **1** was established as shown in Figure 2.

The relative configurations at C-2, C-5, and C-9 were resolved using 2D NOESY experiments. The cross-peaks observed between the protons H-9/H-4 β , H-4 β /H-3 β , H-3 β /H-2, and H-2/H-4 β indicated that H-2 and H-9 were on the same side and were arbitrarily assigned β -orientations. The NOESY correlation pairs of H-15/H-3 α and H-15/H-4 α suggested that H-15 had an α -orientation. Additionally, although the stereochemistry at C-7 could not be determined by the splitting pattern and relevant NOESY correlations, a single-crystal X-ray diffraction showed that 7-OH was in β -configuration. Consequently, the structure and relative stereochemistry of 1 were further confirmed by a single-crystal X-ray diffraction (Figure 3).

The absolute configuration of 1 was determined by analysis of the CD spectrum. A single-crystal X-ray diffraction for 1 showed that the δ -lactone ring was in boat-conformation (H-9 and 7-OH is cis, and H-9 is axial), which corresponded to the

Figure 3. X-ray crystal structure of 1.

Position	Compound 1			Compound 2		
	¹ H		¹³ C	¹ H		¹³ C
1	_	_	139.5 s		_	137.4 s
2	4.02	br s	70.2 d	3.90	t (4.8)	67.07 d
3α	1.76	m		1.78-1.71	m	
3β	2.05	m	28.9 t	1.96	tt (12.8, 3.2)	27.8 t
4α	1.14	dt (13.2, 3.2)		0.96	dt (12.8, 3.2)	
4β	1.54	ddd (14.0, 13.2, 3.2)	32.4 t	1.71-1.64	m	28.0 t
5	_	_	40.0 s	_	_	40.0 s
6		_	135.1 s	_	_	136.0 s
7	4.82	d (4.8)	67.9 d	4.81	d (5.2)	67.6 d
8	_	<u> </u>	171.1 s	_	_	171.1 s
9	5.51	S	79.7 d	5.48	S	79.6 d
10	_	_	121.4 s	_	_	121.7 s
11	7.65	S	142.3 d	7.64	S	142.2 d
12	6.53	S	110.9 d	6.52	S	110.9 d
13	7.59	S	144.0 d	7.58	S	144.0 d
14	1.86	S	14.6 q	1.89	S	17.1 q
15	1.02	S	18.9 q	0.92	s	17.5 q
2-OH	4.02	br s	_ ^	4.13	br s	_ ^
7-OH	5.33	d (4.8)		5.36	m	

Table 1. NMR spectral data for 1 and 2 (CD₃COCD₃, δ in ppm, J in Hz)

peak centered at $\lambda_{\rm max}$ 222 nm in the CD spectrum.⁸ According to the Klyne sector rule for the saturational lactone,⁹ the positive Cotton effect, $[\theta]_{222} = +110000$, indicated that the absolute configuration at C-5 was assigned to S. And then, those at C-2, C-7, and C-9 were fixed to be S, R, and S, respectively. Thus, the structure of **1** was assigned as (2S, 5S, 7R, 9S)-isodictamdiol.

Dictamdiol (2), $\left[\alpha\right]_{\mathrm{D}}^{20}$ – 114 (c 0.42, MeOH), was obtained as colorless crystal. Its molecular formula of C₁₅H₁₈O₅ was deduced from HRESI-MS ($[M + Na]^+$ at m/z 301.1048, calcd. 301.1046) with seven degrees of unsaturation. The IR spectrum displayed absorptions for two hydroxys (3422 and 3342 cm⁻¹), a δ -lactone (1732 cm⁻¹), a double bond (1592 cm⁻¹), and a furyl ring (1503 and $876 \,\mathrm{cm}^{-1}$). 2 gave the same [M]⁺ and fragment peaks in the EI-MS and also had similar features in the ¹H and ¹³C NMR spectra as **1** (Table 1). In comparison with the NMR data of 1,10 the H-2 and 2-OH proton signals of 2 exhibited a upfield shift from δ 4.02 to 3.90 and a downfield from δ 4.02 to 4.13, respectively, and the signal of C-2 was shifted upfield from δ 70.2 to 67.7, indicating that the stereochemistry at C-2 in **2** and 1 were firmly different, which was proposed from the ¹H NMR coupling constants: H-2 in 2 should be equatorial because of the small coupling constant observed between H-2 and H-3 $(J_{2,3} = 4.8 \,\mathrm{Hz})$, whereas the large coupling constant between H-2 and H-3 $[J_{2,3} = 8.8 \,\text{Hz}]$ (after exchange by addition of D₂O)] in 1 implied that H-2 should be axial. Furthermore, its complete structure and relative configuration of 2 were established by an X-ray crystallographic study (Figure 4). As the case of 1, the absolute configuration of 2 was determined as (2R,5S,7R,9S) using the CD spectral study and a single-crystal X-ray diffraction. ¹⁰ Therefore, the structure of **2** was named as (2R,5S,7R,9S)-dictamdiol.

To the best of our knowledge, the absolute configurations at C-5 and C-9 of limonoids reported were determined as S and S for the first time.

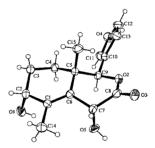


Figure 4. X-ray crystal structure of 2.

This work was supported by the National Natural Science Foundation of China (No. 20621091 QT Program).

References and Notes

- Jiangsu New Medical College (Ed.), Dictionary of Chinese Traditional Medicine, Shanghai Science and Technology Press, Shanghai, 1968, p. 737.
- 2 C. Q. Hu, J. W. Han, J. G. Zhao, G. Q. Song, Y. H. Li, *Zhiwu Xuebao* 1989, 31, 453.
- 3 Y. Jiang, P. F. Tu, N. Zhang, Bopuxue Zazhi 2006, 23, 327.
- 4 J. Blaise, F. Winternitz, *Phytochemistry* **1985**, 24, 2379.
- 5 J. Boustie, C. Moulis, J. Gleye, I. Fouraste, P. Servin, M. Bon, *Phytochemistry* 1990, 29, 1699.
- 6 M. Nakatani, H. Takao, T. Iwashita, H. Naoki, T. Hase, *Phytochemistry* **1988**, *27*, 1429.
- T. Sugimoto, T. Miyase, M. Kuroyanagi, A. Ueno, *Chem. Pharm. Bull.* **1988**, *36*, 4453.
- 8 H. Wolf, Tetrahedron Lett. 1966, 7, 5151.
- G. Snatzke, H. Ripperger, C. Horstmann, K. Schreiber, Tetrahedron 1966, 22, 3103.
- 10 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/.